p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.725C24, C24.107C23, C22.4982+ 1+4, C23⋊2D4⋊50C2, C23.Q8⋊95C2, C23.105(C4○D4), (C23×C4).181C22, (C22×C4).236C23, C23.11D4⋊131C2, C23.10D4⋊112C2, C23.23D4⋊109C2, (C22×D4).300C22, C23.84C23⋊17C2, C2.114(C22.32C24), C2.48(C22.54C24), C2.C42.428C22, (C2×C4⋊C4).534C22, C22.573(C2×C4○D4), (C2×C22⋊C4).343C22, SmallGroup(128,1557)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.725C24
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=g2=1, d2=ca=ac, ab=ba, ede=ad=da, ae=ea, gfg=af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, geg=abe >
Subgroups: 660 in 261 conjugacy classes, 84 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.23D4, C23⋊2D4, C23⋊2D4, C23.10D4, C23.Q8, C23.11D4, C23.84C23, C23.725C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C22.32C24, C22.54C24, C23.725C24
Character table of C23.725C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 4 | -4 | -4 | 4 | -4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ22 | 4 | -4 | 4 | -4 | -4 | -4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ23 | 4 | -4 | 4 | -4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ24 | 4 | 4 | -4 | -4 | -4 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ25 | 4 | -4 | -4 | 4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ26 | 4 | 4 | 4 | 4 | -4 | -4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
(1 36)(2 33)(3 34)(4 35)(5 55)(6 56)(7 53)(8 54)(9 14)(10 15)(11 16)(12 13)(17 22)(18 23)(19 24)(20 21)(25 32)(26 29)(27 30)(28 31)(37 44)(38 41)(39 42)(40 43)(45 52)(46 49)(47 50)(48 51)(57 62)(58 63)(59 64)(60 61)
(1 58)(2 59)(3 60)(4 57)(5 28)(6 25)(7 26)(8 27)(9 39)(10 40)(11 37)(12 38)(13 41)(14 42)(15 43)(16 44)(17 47)(18 48)(19 45)(20 46)(21 49)(22 50)(23 51)(24 52)(29 53)(30 54)(31 55)(32 56)(33 64)(34 61)(35 62)(36 63)
(1 34)(2 35)(3 36)(4 33)(5 53)(6 54)(7 55)(8 56)(9 16)(10 13)(11 14)(12 15)(17 24)(18 21)(19 22)(20 23)(25 30)(26 31)(27 32)(28 29)(37 42)(38 43)(39 44)(40 41)(45 50)(46 51)(47 52)(48 49)(57 64)(58 61)(59 62)(60 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 21)(2 17)(3 23)(4 19)(5 39)(6 43)(7 37)(8 41)(9 28)(10 32)(11 26)(12 30)(13 27)(14 31)(15 25)(16 29)(18 34)(20 36)(22 33)(24 35)(38 54)(40 56)(42 55)(44 53)(45 57)(46 63)(47 59)(48 61)(49 58)(50 64)(51 60)(52 62)
(1 13)(2 42)(3 15)(4 44)(5 19)(6 46)(7 17)(8 48)(9 64)(10 34)(11 62)(12 36)(14 59)(16 57)(18 27)(20 25)(21 32)(22 53)(23 30)(24 55)(26 47)(28 45)(29 50)(31 52)(33 39)(35 37)(38 63)(40 61)(41 58)(43 60)(49 56)(51 54)
(1 7)(2 8)(3 5)(4 6)(9 18)(10 19)(11 20)(12 17)(13 22)(14 23)(15 24)(16 21)(25 57)(26 58)(27 59)(28 60)(29 63)(30 64)(31 61)(32 62)(33 54)(34 55)(35 56)(36 53)(37 46)(38 47)(39 48)(40 45)(41 50)(42 51)(43 52)(44 49)
G:=sub<Sym(64)| (1,36)(2,33)(3,34)(4,35)(5,55)(6,56)(7,53)(8,54)(9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21)(25,32)(26,29)(27,30)(28,31)(37,44)(38,41)(39,42)(40,43)(45,52)(46,49)(47,50)(48,51)(57,62)(58,63)(59,64)(60,61), (1,58)(2,59)(3,60)(4,57)(5,28)(6,25)(7,26)(8,27)(9,39)(10,40)(11,37)(12,38)(13,41)(14,42)(15,43)(16,44)(17,47)(18,48)(19,45)(20,46)(21,49)(22,50)(23,51)(24,52)(29,53)(30,54)(31,55)(32,56)(33,64)(34,61)(35,62)(36,63), (1,34)(2,35)(3,36)(4,33)(5,53)(6,54)(7,55)(8,56)(9,16)(10,13)(11,14)(12,15)(17,24)(18,21)(19,22)(20,23)(25,30)(26,31)(27,32)(28,29)(37,42)(38,43)(39,44)(40,41)(45,50)(46,51)(47,52)(48,49)(57,64)(58,61)(59,62)(60,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,21)(2,17)(3,23)(4,19)(5,39)(6,43)(7,37)(8,41)(9,28)(10,32)(11,26)(12,30)(13,27)(14,31)(15,25)(16,29)(18,34)(20,36)(22,33)(24,35)(38,54)(40,56)(42,55)(44,53)(45,57)(46,63)(47,59)(48,61)(49,58)(50,64)(51,60)(52,62), (1,13)(2,42)(3,15)(4,44)(5,19)(6,46)(7,17)(8,48)(9,64)(10,34)(11,62)(12,36)(14,59)(16,57)(18,27)(20,25)(21,32)(22,53)(23,30)(24,55)(26,47)(28,45)(29,50)(31,52)(33,39)(35,37)(38,63)(40,61)(41,58)(43,60)(49,56)(51,54), (1,7)(2,8)(3,5)(4,6)(9,18)(10,19)(11,20)(12,17)(13,22)(14,23)(15,24)(16,21)(25,57)(26,58)(27,59)(28,60)(29,63)(30,64)(31,61)(32,62)(33,54)(34,55)(35,56)(36,53)(37,46)(38,47)(39,48)(40,45)(41,50)(42,51)(43,52)(44,49)>;
G:=Group( (1,36)(2,33)(3,34)(4,35)(5,55)(6,56)(7,53)(8,54)(9,14)(10,15)(11,16)(12,13)(17,22)(18,23)(19,24)(20,21)(25,32)(26,29)(27,30)(28,31)(37,44)(38,41)(39,42)(40,43)(45,52)(46,49)(47,50)(48,51)(57,62)(58,63)(59,64)(60,61), (1,58)(2,59)(3,60)(4,57)(5,28)(6,25)(7,26)(8,27)(9,39)(10,40)(11,37)(12,38)(13,41)(14,42)(15,43)(16,44)(17,47)(18,48)(19,45)(20,46)(21,49)(22,50)(23,51)(24,52)(29,53)(30,54)(31,55)(32,56)(33,64)(34,61)(35,62)(36,63), (1,34)(2,35)(3,36)(4,33)(5,53)(6,54)(7,55)(8,56)(9,16)(10,13)(11,14)(12,15)(17,24)(18,21)(19,22)(20,23)(25,30)(26,31)(27,32)(28,29)(37,42)(38,43)(39,44)(40,41)(45,50)(46,51)(47,52)(48,49)(57,64)(58,61)(59,62)(60,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,21)(2,17)(3,23)(4,19)(5,39)(6,43)(7,37)(8,41)(9,28)(10,32)(11,26)(12,30)(13,27)(14,31)(15,25)(16,29)(18,34)(20,36)(22,33)(24,35)(38,54)(40,56)(42,55)(44,53)(45,57)(46,63)(47,59)(48,61)(49,58)(50,64)(51,60)(52,62), (1,13)(2,42)(3,15)(4,44)(5,19)(6,46)(7,17)(8,48)(9,64)(10,34)(11,62)(12,36)(14,59)(16,57)(18,27)(20,25)(21,32)(22,53)(23,30)(24,55)(26,47)(28,45)(29,50)(31,52)(33,39)(35,37)(38,63)(40,61)(41,58)(43,60)(49,56)(51,54), (1,7)(2,8)(3,5)(4,6)(9,18)(10,19)(11,20)(12,17)(13,22)(14,23)(15,24)(16,21)(25,57)(26,58)(27,59)(28,60)(29,63)(30,64)(31,61)(32,62)(33,54)(34,55)(35,56)(36,53)(37,46)(38,47)(39,48)(40,45)(41,50)(42,51)(43,52)(44,49) );
G=PermutationGroup([[(1,36),(2,33),(3,34),(4,35),(5,55),(6,56),(7,53),(8,54),(9,14),(10,15),(11,16),(12,13),(17,22),(18,23),(19,24),(20,21),(25,32),(26,29),(27,30),(28,31),(37,44),(38,41),(39,42),(40,43),(45,52),(46,49),(47,50),(48,51),(57,62),(58,63),(59,64),(60,61)], [(1,58),(2,59),(3,60),(4,57),(5,28),(6,25),(7,26),(8,27),(9,39),(10,40),(11,37),(12,38),(13,41),(14,42),(15,43),(16,44),(17,47),(18,48),(19,45),(20,46),(21,49),(22,50),(23,51),(24,52),(29,53),(30,54),(31,55),(32,56),(33,64),(34,61),(35,62),(36,63)], [(1,34),(2,35),(3,36),(4,33),(5,53),(6,54),(7,55),(8,56),(9,16),(10,13),(11,14),(12,15),(17,24),(18,21),(19,22),(20,23),(25,30),(26,31),(27,32),(28,29),(37,42),(38,43),(39,44),(40,41),(45,50),(46,51),(47,52),(48,49),(57,64),(58,61),(59,62),(60,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,21),(2,17),(3,23),(4,19),(5,39),(6,43),(7,37),(8,41),(9,28),(10,32),(11,26),(12,30),(13,27),(14,31),(15,25),(16,29),(18,34),(20,36),(22,33),(24,35),(38,54),(40,56),(42,55),(44,53),(45,57),(46,63),(47,59),(48,61),(49,58),(50,64),(51,60),(52,62)], [(1,13),(2,42),(3,15),(4,44),(5,19),(6,46),(7,17),(8,48),(9,64),(10,34),(11,62),(12,36),(14,59),(16,57),(18,27),(20,25),(21,32),(22,53),(23,30),(24,55),(26,47),(28,45),(29,50),(31,52),(33,39),(35,37),(38,63),(40,61),(41,58),(43,60),(49,56),(51,54)], [(1,7),(2,8),(3,5),(4,6),(9,18),(10,19),(11,20),(12,17),(13,22),(14,23),(15,24),(16,21),(25,57),(26,58),(27,59),(28,60),(29,63),(30,64),(31,61),(32,62),(33,54),(34,55),(35,56),(36,53),(37,46),(38,47),(39,48),(40,45),(41,50),(42,51),(43,52),(44,49)]])
Matrix representation of C23.725C24 ►in GL12(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 3 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 3 |
0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 3 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 2 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 1 |
G:=sub<GL(12,GF(5))| [4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4],[3,0,0,1,0,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,2,3,0,3,0,0,0,0,0,0,0,0,0,1,0,3],[0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,3,0,0,3,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,4,0,4,0,0,0,0,0,0,0,0,0,3,0,4],[0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,2,0,0,0,0,0,0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,1,2],[4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,1,0,0,0,0,0,0,0,0,1,0,1,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,3,1] >;
C23.725C24 in GAP, Magma, Sage, TeX
C_2^3._{725}C_2^4
% in TeX
G:=Group("C2^3.725C2^4");
// GroupNames label
G:=SmallGroup(128,1557);
// by ID
G=gap.SmallGroup(128,1557);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,758,723,794,185]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=g^2=1,d^2=c*a=a*c,a*b=b*a,e*d*e=a*d=d*a,a*e=e*a,g*f*g=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,g*e*g=a*b*e>;
// generators/relations
Export